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Introduction

The general analysis of the stationary modes of oscillating
systems with periodic parameters is of great theoretical and practical signifi-
cance. Similar obstacles crop up in connection with many problems related to
the Theory of oscillations in particular when investigating parametric amplifica-
tion and generation of oscillations, frequency modulation, detection and conver-
sion, suppression of undesired oscillations and intermodulation distortions, etc.

In the Part lof the paper [1), the possible transformations of the equations
of an oscillating circuit with periodic and almost periodic parameters have been
given and the expedience of using different equations forms has been analyzed.
A qualitative picture of the free processes in an oscillating circuit has been
presented on the basis of the mathematical theory of Hamiltonian sysiems,

The Part 2 of the paper [2] has been focused on the problems of the stability
of the cannonical systems in a general form. Criteria for the stability or instabil-
ity of a general linear rescnance circuit have been formed.,

' An investigation, supported by the “Scientific Research” Bulgarian National Fund under
Contract No TH - 54995,
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Present Part 3 of the paper provides an analysis of the free processes, in
piece-wise linear and quasi-harmonic oscillating circuits, from the point of view
of their bounded or unbounded nature. In other words, it studies issue of the
stability and instability of the oscillating circuit.

Stability of an oscillating circuit with a piece-wise
linear volt-coulomb characteristic

In linear approach the concept of stability coincides with
the concept boundedness of 2l solutions of the respective differential equation
with a zero right-hand part and bounded initial conditions. Having lost its sta-
bility, the parametric amplifier is converted into a parametric oscillator.

The equation of a series oscillating circuit containing capacitance C{(z,),
periodically changing in time, acquires the following form with respect to the

charge g

d’q R d
(1) L2, R84, g=0,

de¢  Ldt, LC(,)
where R and L are the constant resistance and the inductance of the oscillating
circuits. [ R
We use the following substitution 4 =qexp(—Ezfr) to reduce Eq. (1) to
the form:

| 1 R?
+ ———1g, =0

which contains no explicit dissipative term.

The capacitance C(1,) is regarded as a piece-wise linear time function,

C=C, for t,€(0,t,4),and C=C, for ¢, € (1,.7,),

where 7T, is the capacitance change period. Thus the capacitance changes twice
in one period: when 1, =t,,, it leaps from C, to C,, and when ¢, =7, , from.-C,
to C;. :

Equation {2) can be written in the following dimensionless form:

d*y : e

(3) — +a(ny=0,
dt*

where
¢
z:zL, te =VLYCC, ., alt)=o? = %
00 . I

at te(0,4), and a(r)=—1-2—=\/§ at te (4,,T), 4 =£”-1—, T=&.
o C2 Tuo Loo
Equation (3) has constant coefficients in the interval (0,4) and its solution
is a cosine curve. The same can be established for the interval (4.,7). At mo-
ment ¢, the amplitude, the frequency and the initial phase of the cosinusoid
change in a leap-like way, yet sc that the function turns out to be continuous
and sufficiently smooth (with continuous first-order derivative). Equation (3) is
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a particular case of Hill’s equation. It follows from the latter’s theory that it
cannot be asymptotically stable, i.e. if ¥(t) is a solution of the equation,
lim y(£) #0.
f—ron
% Therefore, the stability problem boils down to specifying one of the two
cases: a} the case of stability, when the above-mentioned boundary is a finite
number; b} the case of instability, when the module of the boundary is equal to
infinity,

The solution of Eq. (3) is determined in the following way:

W1} = yg cos{ou+ ;) for 1e(0,1),

{4)
W= yy cos(ét +9,) for te {4.7),

Yor and @, are determined by the initial conditions, Vo2 and @, are specified

by the condition of continuousness of the function Y1) and its derivative at the
moment 4, when the capacitance changes in a leap-like manner.

= L
0, = arctglo’tg(os; +@; )—Eﬁ],
sin(ot, +
Yoo = &g SOV i .
sin(—¢, +
(oc 2+ 9s)

Equation (3) can be presented in a matrix form:
din 0 11y dy
—— = ’ = . y = -
dt [ yJ [— a(t)y 0]y, . yl 2T
or in short :

d
(5) - E’?Y =A()Y.

According to Flocker’s theory, the fundamental matrix of the solution
satisfies the condition:

(6) Y+T)=Y(OY(T),

where Y(T') is a constant matrix, called monotromy matrix. This matrix allows
of obtaining Lyapounov’s constant .a = SpY(T'), where Sp is the sum of the ele-
ments of the principal diagonal of the matrix. ‘

In accordance with Lyapounov’s first method, the following three cases are
distinguished for Eq. (3): 1) |a|> 2, 2) faj<2, 3)lal=2.

In the first case the equation is unstable, in the second one it is stable, and
in the third case it is determined by the boundary between the stable and un-
stable ranges.

Using solution (5), which can serve for construction the monodromy ma-
trix, whose elements are obtained in the form:
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1 : 411
Yy = COS O COSE(T-—II)—O!,ZSIHCLII sm—&(T—{l),

1. i : VI s
¥y = —sina cos—(T =1} +ocos g sin—(T -4),
o o o

b L= 1
Yoy = —0tcos oy sin—(T — 4} ——sin o cos—(T -4 ),
o o o

1 1 1
Vo = ———sinou, sin —{T = ;) +cos o cos—{T — 1 ).
Y22 -5 | {1( 1) { a( 1)
This helps derive an expression for Lyapounov’s constant :
{1 a=SpY(T) =y, +yy =2c080 cosj-(T ~1)
. o

1§ el
—{0? +—)sinouy sin—(T —4).
o ol

This expression allows of identifying which of the above-listed three cases
the system refers to in each specific occurrence and in what way the stability
problem is to be solved. The areas of stability or instability are determined by
three parameters — @, 4 and T, ie. in the general case they can be plotted in a
three-dimensional space.

Fig.1 shows the areas of stability and instability (hatched) on the plane
4

o, for the particular case of 7 = 27 Parameter o changes within the range

n .
I < @ < 10. It can be obtained from the case for @ >1, given above, by carrying
out the following substitution of the parameters: B=—,7 =T 4.

10

Fig.} !
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Analysis of the free processes in a
linear quasi-harmonic oscillating circuit

Obiject of the analysis in this section is a linear gnasi-har-
monic oscillating circuit, whose fre¢ processes are described by a quasi-har-
monic time function, i.e. by a sine function with amplitude slowly changing in
time and first derivative of the phase by time. The major application area of
such oscillating circuits is that of harmonic signal modulators.

Let us consider the general case of a series resonance circuit, where the
inductance L, capacitance C and resistance R are time-dependent. The free pro-
cess in such a circuit is described by the equation

d*x o i
— =420 —+w{)x =0
(8) o 0 7 5 (0 z
where x = i,: _ v _ normalized capacitor charge and normalized time re-
Qoo IGO

IOO

dL
i o=—"wt R W{}=—F=
spectively, 7 ook o E ;

The general solution of Eq. (8) can be presented in the formi

{9 x = A{1,T)sin (¢, T) ,
where
iy = eodeuienl haspu
Jo0,0 o, -

! ! T =
(10) B, 7) = { fon+ (L + EEIH @, ) cos 2001, T)]dt,

r 1d
;L,T)y = [{o, + ——Inw, )sin 29z, 1)}dt -
o(t,7) {Im (ot I, )sin 204, V)

Here the constant T determines an arbitrary initial point of time.
" Equation (10) given above yields an indicator of the integrability of Eq. (8)
in quadratures — '

d
a(y+—Inw, (}=0.
{t) = o (1)

The first and second equations of (10) can be produce an indicator of the

s

asymptotic stability of the oscillating circuit — fj&@_ < fort> ¢, ' —an
arbitrary moment. dt

So far we did not impose any limitations on the laws of time-dependent
oscillating circuit parameters.

Let us suppose that the oscillating circuit satisfies the quasi-harmonic con-
dition, i.e. we assume that the first co-multiplier in the right-hand part of (3)is a
slowly changing time-dependent function. Under these conditions the approxi-
mate extremumns of the solution .atre
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; T
w(tk,'r)=(2k+1)5, k=0, +l, +2, ..,

respectively the zeroes of the solution are ¢{¢°,7) = k= .
The Iogarithmis; damping decrement is determined by using two adjacent
extremums of the solution

A7) _

V(1) = In oS

g 1d 2
= o+——Inw, Ycos® gdr.
'f ( 2 dt PISESHG
fhg
The non-negativity of the logarithmic damping decrement for any t, isan
evidence of stability, and its positiveness is an evidence of asymptotic stability
of the quasi-harmonic oscillating circuit, _ :
The last expression can yield an analytical indicator of stability of the quasi-
harmonic oscillating circuit:

14
11 o=——Inw, 20,
{11) 2 2 B %%
If we introduce the parameter instantaneous characteristic resistance of

L
the oscillating circuit p = o (11) can be used to obtain a simple criterion of
asymptotic stability — p = const . ' ;
We introduce the concept instantaneous quality factor of the oscillating
circuit g = _p_’ and as a result the formula of the logarithmic damping decre-

ment acquires the form

krl:+-;£ 5
cos” @
vir )= ——{dp+0dIn
(t) REJ:EQ+0,Ssin2¢>( 24 lnnl

Let Q =const. Then
k'.r:-t»E

2 2 Inp(z) 2

COS° ol cos®

v{t,) = J’ [SERE DG __Q__(I)___d(lnp)_

_Q+05sin2¢ ]np(:k_l'} Q+0,58in2¢

hem——
2

The ﬁfst integral is equal to (40 — 1);1" 2 Hence, the stability criterion can be
written as follows:

Inp(t, } 2
-—Q—(;M—d(lnp) Eait B o :
1np(:,‘_,)Q+0’55m2(p 40% —1
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e 2
] €Os 2
Since max Q - Qo2 20
¢ 20+sin2¢ 402 )
sion for its maximum value, we ¢obtain

4G4 ¥ sp(rig). s

407 -1 pltyy) Va0 -1°

_This inequality allows of obtaining the following simple stability expression

» after substituting the sub-integral expres-

at O =const . :
In&nﬂ < _1..5_ y
Pmin 20

For a more detailed investigation of the free processes in an oscillating
circuit with slowly changing parameters it is desirable tc obtain an approximate
solution of the last integral equation in (10). It is presented in the following way:

t i
ld
=YFTE Y=]0,dl £= |(0+——Inw,)sin2odr.
P=v+e, ¥ ;[ b {( 5 470 @0)sin2e
The inequality y>>¢ is valid for many cases of practical importance, since
the sub-integral- function of the first integral has a constant sign, while that of
the second one is quickly oscillating. After differentiating the last equation in
(10}, we obtain
de 1d
— ={o+_—~—Inw, )(sin 2ycos 2eo.cos 2ysin 2e
d{( 77 o J(sin 2y i Vi
In linear approximation (cos2e = 1,sin2e = 2¢) this equation is solved in
quadratures

H t {
£= !:ZJpcos Zydr}fusin Zyexp[— Z'I'ucos%(Jdr !
T T T :

After obtaining ¢ equations (10) can be computed in quadratures and in
this way the problem is completely solved.

Conclusion

The phenomenon “resonance” occupies peculiar position
in natural and other sciences, in technology, in civil engineering subjects, in
medicine, in the theory of musical instruments, in acronautics theory, in rocket
technics and astronautics, etc. Resonance is often manifested in the world that
surrounds us either as a highly useful phenomenon or as an extremely harmful
one. Radio communications, radio broadcasting, television and the other radio
engineering systems would be absolutely inconseivable without resonance. Reso-
nance is quite multiaspectual and multiform even in oscillating circuits with
‘constant parameters. Resonance phenomena in nonlinear oscillating systems
are virtually boundless.
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Linear systems are quite frequently identified as systems with constant pa-
rameters not only in textbooks and other teaching aids but in scientific works as
well. This approach reduced drastically the class of linear systems since it ex-
cludes linear systems with time-dependent parameters. The principle of linear
connection, formulated relatively recently, has boosted the significance of lin-
ear systems with variable parameters, since it follows from this principle that if
the whole set of linear systems can be studied, this will automatically lead to the
establishment of the necessary scientific basis for investigating the processes
occurring in nonlinear systems.

Oscillating circuits with periedic parameters can be divided into two groups.
One of them includes oscillating circuits where given arbitrary initial condi-
tions, free processes are limited. The other group, respectively, encompasses
oscillating circuits, whose initial conditions can be selected in such a way as to
ensure unlimited free processes. Each group of oscillating circuits, in its turn, is
characterized by a set of stability and instability area, It is particularly impor-
tant to develop analytical approaches for determining the area of stability or
instability to which the specific oscillating circuit belongs.

The paper contains formulations of general theorems on systems with posi-
tive elements concerning the relation between the parameters of the system and
the matrix elements of the respective differential vector equation. Infinitive sys-
tems of algebraic equations for some typical systems'with periodic parameters
are obtained; the properties of these systems of equations are explored, the
general case relation between the complication of the radio-physical systems
and the respective alteration of the systems of equations describing them is
identified. The multitude of free processes occurring in an oscillating circuit
with periodic and almost periodic parameters is visualized in a dynamic picture.
Theorems concerning the conditions that would be sufficient for the stability or
instability of an oscillating circuit with periodic parameters are formulated.

Qualitative analysis assumes considerable importance in the investigation
of complex oscillating systems, since it allows of identifying the most general
features of systems behaviour. Such a general perspective of the approach makes
it interesting from a practical point of view, since the oscillating circuit with
periodical parameters is quite rich in particular cases.
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KauecTBeH aHann3 Ha CBOOOIHUTE NIPOLIECH B
0b0011eH JIMHEEH TPEIITAIL KPBT ¢
NMepUOAKYHM IapameTpu. HacTt 3. Anaiuz Ha
CBODOIHHUTE NPOIECH B HHTEPBATHO-IMHEHHA ¢
KBa3H-XapMOHMYHA TPEITSIA BEpUra

Huxoaati Buprwox, Baadumup Jarmeos

(Peziwome}

B wact IbpBa ¥ B YaCT Bropa Ha cTaTHATA De JOKa3aHa
HeODXCHUMOCTTA OT M3CHEJBAHE HA TPENTANIMTE DEIOHAHCHH CHCTEMH C
INEPROANYHH U IOYTH IEPHONHIHH IapaMeTpH B OBl BUA ¢ OWIEN ISUICCTHC
ofxBaillaHe Ha OTPCMHOTO paszHooOpasue OT PEeXHMH, 3aKOHOMEPHOCTH H
csoiictBa. Paspaboren 6e oy MeTo) 328 aHANNR HA TEKHBA CHCTEMHU, KOUTO 65X4
TpYIMPaHH H KJACU(QHUEPaHH B TPHMEPHC LMAHHAPHINC IIPOCTPAHCIBO HA
lapaMeTpHTe DO TeXHMs# HaR-BaXell NMPH3HAK — YCTOHYUBOCTTA MM
BeyCTORMMBOCTT: Ho Jlsnyros. [IpobnemuTe Ha yeToMuBBOCTTA BAXa U3CTEABAHH
KaKTO B 1ai-00UI BHA ¢ U3I0J3BAHE HA KAHOHHYHA CHCTEMA YDABHEHUA, Taka H
IpH OIpeleNicHa XKOHKPETH3ALHS Ha TPENTALATZ PEe30HAHCHE CHCTEMA
LIEPUOJIHIHN TlapaMeTpH.

Tpera uyact Ha paborara UIpONBNKABA M3NATAHETO HA METQJINTE 32
R3TNCN3BaHe paspaborTeHUA JHANHMTHYEH [OJXCA KbM JIOCT4THYHO
KOIKPETH3UPAlM DE3CHAHCIM CHCTEMH C [NEPUOANYHM K [OYTH UEPHOOMYHMR
iapamMerpi. MscoeaBat ce cBOOOAIKTE TPENTAIIH IIPOBECH B MHTEPBANHO-
JiuHeHHa PE30HAHCHa CHCTEMA, B KOATO KOHKDETHO Kalaluielrbl NpHeMa [Be
onpefAeneHy CTOHHOCTH ¢bC 3aflafiéd NepHos BbB BpemeTo. Hpyra
KOHKDETU3Mpana 3a/a4a e n3acienBaHe HA ¢BOBOLHMTE NPOLECH B JIuueiina
KBA3HXAPMOHHYHE TPENTALUA CHCTEMd, B KOSATO IBMKEHHUETO CE CHUCBA C
KBA3HUXAPMOHHYHA (hYHKIUSA {(M3M0JI3RAHA € CUITYCHA DYHKINS ¢ $aBHOM3MEHSLIA
ce amiuinryia). M B npara cnyuasa ca GopmMynupasd obIH TeoOpeMH OTHOCHO
ChOTHOUIEHKETO Ha IIQJICHKHTENIIMTE IapaMeTPH Ha CHCTEMATa M ENeMEBTUTE
HE MATPALATA HA CHOTBETHOTO BEKTOPHE MH(epeHIUanto ypapaenne. Vizpetenu
€a yCROBMATA 3a YCTORYHMBOCT M HCYCTOMYHBOCT Ha PaslIeKIaHHTE CHCTEME,
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